

PRACTICAL SKILLS IN BIOCHEMISTRY AND MICROBIOLOGY

UG/PG/RESEARCH SCHOLARS OF LIFE SCIENCES MICROBIOLOGY, AND BIOTECHNOLOGY

DR. RUPA VERMA

PRACTICAL SKILLS IN BIOCHEMISTRY AND MICROBIOLOGY

UG/ PG/ RESEARCH SCHOLARS, OF LIFE SCIENCES, MICROBIOLOGY AND BIOTECHNOLOGY

First Edition

Author

Dr. Rupa Verma Assistant Professor MSc Biotechnology University Department of Botany Ranchi University Ranchi, India. ORCID ID: https://orcid.org/0000-0001-9363-0623

Title of the Book: Practical Skills in Biochemistry and Microbiology

First Edition - 2024

Copyright 2024 © **Dr. Rupa Verma,** Assistant Professor, MSc Biotechnology, Department of Botany, Ranchi University Ranchi, Jharkhand, India.

No part of this book may be reproduced or transmitted in any form by any means, electronic or mechanical, including photocopy, recording or any information storage and retrieval system, without permission in writing from the copyright owners.

Disclaimer

The author is solely responsible for the contents published in this book. The publishers don't take any responsibility for the same in any manner. Errors, if any, are purely unintentional and readers are requested to communicate such errors to the editors or publishers to avoid discrepancies in future.

E-ISBN: 978-93-5747-670-6

MRP Rs. 260/-

Publisher, Printed at & Distribution by:

Selfypage Developers Pvt Ltd., Pushpagiri Complex, Beside SBI Housing Board, K.M. Road Chikkamagaluru, Karnataka. Tel.: +91-8861518868 E-mail:info@iiponline.org

IMPRINT: IIP Iterative International Publishers

For Sales Enquiries: Contact: +91- 8861511583 E-mail: sales@iipbooks.com

PREFACE

Biochemistry uses chemistry to study biological processes. It involves the study of macromolecules like proteins, lipids, carbohydrates, and nucleic acids. Biochemistry is related to how these macromolecules are produced and involved in different functions. Also, how they interact with other molecules. Biological processes studied through biochemistry cover diverse topics, including metabolism, gene expression, and cell Interaction.

Microorganisms, which can only be seen under a microscope, include bacteria, viruses, fungi, and some small parasites. Topic microbiology includes the classification of different types of microorganisms, studying their life cycles and growth patterns, and the mechanisms by which they infect other organisms. Methods for removing and preventing infections by microorganisms are another important aspect of microbiology, that also involves the development of antibiotics and vaccines.

Although microbiology and Biochemistry focus on different aspects of biology, they also overlap. Understanding the proteins involved in bacterial metabolism allows you to study their growth patterns. Similarly, understanding the macromolecules composing the receptors used for viruses to bind to and infect human cells allows you to study the infection patterns of viruses. Another area of overlap is in recombinant DNA technology. In this field, bacterial or yeast cells are used to produce human proteins, making them readily available as vaccines or other drugs.

The major difference between microbiology and biochemistry is that biochemistry involves the study of the macromolecules that make up an organism, while microbiology studies the organism as a whole. Microbiology studies the way an entire organism, such as a virus, lives and infects its host. Biochemistry, however, focuses on specific macromolecules and how they come together to form larger structures, such as cells or tissues, or how they interact with each other to carry out the complex reactions necessary to keep an organism alive, such as the metabolism of carbohydrates into energy, or expressing genes.

Experimental Biology presents both the principles of analytical Biology that make experimental, analytical and separation techniques possible in the laboratory with background information to understand what the students are going to do and why including technical information the students gather in the laboratory. The book is subdivided into two parts including biochemistry and Microbiology. This laboratory manual is the outcome of teaching in this area for the past 10 years to M.Sc and B.Sc students belonging to Biotechnology and Life Sciences. The idea behind this practical manual was to provide the theoretical basis of practical study. Items to be undertaken in the laboratory in lucid manner. We shall be grateful if the book is accepted as a valued practical test book by the student of Life sciences and Biotechnology at the undergraduate and postgraduate levels of most Universities.

Dr. Rupa Verma

ACKNOWLEDGEMENT

First of all, I would like to thank almighty God. I would like to express my sincere gratitude to my supervisors, my friends, and my Family for their invaluable guidance and support. I am also grateful to my students and colleagues, for their insightful feedback and encouragement. I would like to thank my daughters for their unwavering support and love. Finally, I would like to acknowledge the contribution of the publisher, IIP Publications, for their assistance in bringing this book to fruition.

Dr. Rupa Verma

CONTENTS

Sl.No	Chapter Title	Page No.
Chapter 1	Biochemistry Practical	1-55
1.	Units And Measurements	1
2.	Laboratory Biosafety Rules and Regulations	5
3.	Preparation of Buffer	11
3.1	TAE buffer	11
3.2	How to make 50x TAE buffer	12
3.3	How to make 1x TAE buffer	12
3.4	Citrate Buffer	12
3.5	Acetate Buffer	13
3.6	TRIS (Hydroxy Methyl) Aminomethane Buffer (Tris HCl)	13
3.7	TBE buffer(Tris-Borate- EDTA)1X, 5X, 10,x	14
4.	Qualitative and Quantitative Analysis of Carbohydrates as Biomolecules	16
5.	Proteins as Biomolecules.	29
5.1	Qualitative Analysis of Proteins	29
5.2	Xanthoproteic Test	39
5.3	Millon's Test (Cole's mercuric nitrite test)	40
5.4	Sakaguchis Test for Guanidine Group	41
5.5	Sulfur Test for Cystine and Cysteine	42
5.6	Pauly's Test for Histidine and Tyrosine	43
5.7	Molisch Test for Carbohydrate Moiety in Proteins	44
5.8	Test for Organic Phosphorus (Neumann's Test) (Test with casein solution)	44
6.	Aim of the Experiment: Chromatography	45
7.	Aim of the Experiment: Electrophoresis	46
8.	Aim of the Experiment: Isolation of DNA from leaves	52
8.1	Aim of the Experiment: Isolation of plant genomic DNA by modified CTAB method.	53
Chapter 2	Microbiology	56-114
1.	The Discovery of Microorganisms and Development of Microbiology	56
1.1	Aim of the Experiment: Microbiology Lab Practices and Safety Rules. General Rules and Regulations	59
1.2	Aim of the Experiment: Tools in Microbiological Laboratory	62

1.3	Aim of the Experiment: Study of Sterilization Techniques	66
1.4	Cultural Characteristics of Microorganisms	72
1.5	Preparation of Culture Media	74
1.6	Aim of the Experiment: Different types of Media	78
110	Composition and Preparation	, 0
17	Aim of the Experiment: Plating Techniques in	81
1.7	Microbiology Laboratory	01
18	Aim of the Experiment: Maintenance of Pure	84
1.0	Culture	04
1.9	Aim of the Experiment: To study the Culture	85
	preservation Techniques	65
1 10	Aim of the Experiment: To Identify Rectorial	86
1.10	Colonies by Steining methods	80
1 1 1	Aim of the Experiment: Carbohydrate Eermontation	00
1.11	A Dischamical test for the Identification of Pasteria	90
1 1 0	A biochemical test for the Identification of Dacteria	01
1.12	All of the Experiment. Biochemical tests for the	91
	Teet	
1 1 2	Iest Aim of the Europianant. Indole Production Test	02
1.13	Aim of the Experiment: Indole Production Test	92
1.14	Aim of the Experiment: Methyl Red test	94
1.15	Alm of the Expriment: Voges – Proskauer Test to	95
	Determine the Addity of many Microorganisms to	
	Environmentation of Changes	
1 1 C	Fermentation of Glucose	06
1.10	Aim of the Experiment: Citrate Utilization Test	96
1.1/	Aim of the Experiment (Nitrate Reduction Test)	98
1.18	Aim of the Experiment (Urease test)	99
1.19	Aim of the Experiment: To detect whether the given	101
	Organism is motile and also Mannitol is Fermenting	
	or not(Mannitol Motility Test)	100
1.20	Aim of the Experiment: To identify the	102
	Microorganisms based on the ability to Ferment the	
	Carbohydrates (Glucose, Sucrose, and Lactose)	
	/Triple Sugar Iron Agar Test	
1.21	Aim of the experiment: To demonstrate the presence	103
	of Catalase in an Organism/Catalase Test	
1.22	Aim of the Experiment: Heterotrophic Plate	104
	Count(Membrane Filtration Technique)	
3	Aim of the Experiment: Bacterial Enumeration	106
4	Aim of the Experiment : Separation of circular DNA	110
	by Agarose gel Electrophoresis	

ABOUT THE AUTHOR

Dr. Rupa Verma is an Assistant Professor of MSc Biotechnology University Department of Botany Ranchi University Ranchi. She did her graduation and post-graduation in the subject of Biotechnology. She also did a post-graduation in the Subject of Botany. She did subject of Biotechnology. She also did a post-graduation in the Subject of Botany.She did her Doctorate in 2017 on the topic titled "Study on the effect of antimicrobial peptide apidaecin against bacterial and fungal pathogens on plants."She worked at the Laboratory of Plant Pathology Under the principal Scientist Dr. Sudarshan Mourya, in ICAR- RCER research center Palandu, Ranchi during her Ph.D. She previously did her job as a guest Faculty at NIFFT Engineering College Ranchi and took classes of MTech in the subject of Environmental Microbiology and Ecology. She has guided more than 20 students of the MSc Biotech for Dissertations. Project with paper publication in National and Interpreting Ligurgels. At Descent de Laboratory

for Dissertations Project with paper publication in National and International journals. At Present she has 30 published research and review articles and book chapters in peer-reviewed journals. She was the Chief Speaker in International and National seminars. She got the Young Scientist and Distinguished Researcher award from I2OR and Green ThinkerZ society at the IRSD International Conference 2023. At Present She is the Associate Member of I2OR and the American Chemical Society. She is also a member of the Society for Plant Research. She is Chief Coordinator of the Microbiologists Society India in the Jharkhand Unit. Also, She is the Founder of the new Society named Biotechnologist Society of Bharat.

