A STUDY MATERIAL FOR APPLIED CHEMISTRY

IIP

DR. R. S. S. SRIKANTH VEMURI DR. MADHAVI KONNI

A Study Material for Applied Chemistry

First Edition

Authors

Dr. R. S. S. Srikanth Vemuri Dr. Madhavi Konni

INSC International Publishers

Title of the Book: A Study Material for Applied Chemistry

Edition: First- 2021

Copyright 2021 © Authors

Dr. R. S. S. Srikanth Vemuri, M.Sc, Ph.D, he is working on homogenous and heterogeneous catalysis, multivariate statistical analysis of soil samples and theoretical studies on tuning of molecules for semi conductors.

Dr. Madhavi Konni, Associate Professor, doctorate in Nanoscience and Nanotechnology in the Department of Chemistry from GITAM (Deemed to be University), Visakhapatnam, India.

No part of this book may be reproduced or transmitted in any form by any means, electronic or mechanical, including photocopy, recording or any information storage and retrieval system, without permission in writing from the copyright owners'.

Disclaimer

The authors are solely responsible for the contents published in this book. The publishers or editors don't take any responsibility for the same in any manner. Errors, if any, are purely unintentional and readers are requested to communicate such errors to the editors or publishers to avoid discrepancies in future.

E-ISBN: 978-1-68576-101-1

MRP Rs. 200/-

PUBLISHER & PRINTER: INSC International Publishers

Pushpagiri Complex, Beside SBI Housing Board, K.M. Road Chikkamagaluru, Karnataka Tel.: +91-8861518868 E-mail: info@iiponline.org

IMPRINT: I I P

Preface

"A Study Material For Applied Chemistry" book is exclusively dedicated to First Year B. Tech Graduate students (CSE, ECE & IT branches) under JNTU Kakinada affiliated colleges R20 regulation. This book prepared as per the syllabus prescribed by JNTU Kakinada. This material is well written and easy to understand the concepts. This book is essential for Semester exam preparation. All topics covered and suggested important questions which are coming in semester end exam of Applied Chemistry Paper.

This book contains 5 chapters (Units) as per the prescribed syllabus by JNTU Kakinada. First chapter (Unit) is Polymer technology, the outcome of this chapter is at the end of this chapter student can be able to understand the importance of plastics and knows the fabrication process of plastics. In this chapter, authors explained bio medical, bio – degradable and bio polymers separately.

Second Chapter (unit) is Electrochemical Cells & Corrosin, the outcome of this chapter is at the end of this chapter student can be able to identify different types of batteries and apply the corrosion control methods in real life. This Chapter devides into two parts. Part A deals about electrochemical cells and different types of batteries and Part B deals about corrosion factors and types of corrosion and its control methods.

Third Chapter (Unit) is Material Chemistry, This unit devides as part A & B. Because **Mid I exam portion is upto part A of this chapter**. Part A consists of Semiconductors preparations and applications, Magnetic materials and Hall Effect, and Electrical insulators and their applications. **Mid II exam portion starts from part B**. Part B contains Nano materials, Carbon nanotubes, Fullerenes, Graphene, Liquid Crystals and Super conductors. At the end of this chapter student can be able to learn about various materials which are used in different fields like electrical and medical and chemical industries. Fourth Chapter (Unit) is Spectroscopic techniques and Non conventional energy sources. At the end of this chapter student can be able to learn advanced analytical techniques like UV-Vis, FT- IR, NMR spectroscopic techniques and understand the alternate energy sources for non – conventional energy sources. Solar cells and Ocean Thermal Energy Conversation are promise techniques in future energy.

Fifth Chapter (Unit) is Advanced Topics in Chemistry deals Introduction Computational Chemistry and Molecular machines. These new topics are introduced in this syllabus from last year. Especially introduction to computational chemistry is very new and to these level students, so far there is no sufficient information available for this level student hence this book is very helpful. At the end of this chapter students will learn the basic information about computational chemistry and molecular mechanics.

Acknowledgement

Author RSSSV, expressed his gratitude towards Prof. A. Sesha Rao, Principal, Vignan's Institute of Engineering for Women for his continuous encouragement and also authors thanks to Dr. K. Chaitanya, Head, Department of Basic Sciences & Humanities, Vignan's Institute of Engineering for Women for his suggestions in computational chemistry topic.

Contents

Unit 1	Polymer Technology	1-26
1.1	Emulsion Polymerization method	1
1.2	Suspension Polymerization Method	1
1.3	Mechanical Properties of Polymers	2
1.4	Compounding of Plastics	3
1.5	Compression Moulding	5
1.6	Injection Moulding	5
1.7	Blown Film Method	6
1.8	Extrusion Moulding	7
1.9	Poly Vinyl Chloride	8
1.10	Bakelite	9
1.11	Polycarbonates	10
1.12	BuNa-S (styrene butadiene rubber) / SBR/GR-S	12
1.13	Thiokol Rubber (or) GRP (or) Polysulphide Rubber	13
1.14	Polvurethane	13
1.15	Composite Materials	14
1.16	Fiber Reinforced Plastics (FRP)	15
1.17	Conducting Polymers	16
1.18	Biodegradable Polymers	19
1.19	Biopolymers	21
1.20	Biomedical Polymers	22
1.21	Physical Properties of Polymers	24
1.22	Natural Rubber	25
1.23	Vulcanization of Rubber	26
Unit 2	Electrochemical Cells and Corrosion	27-59
2.1	Single Electrode Potential	27
2.2	Electrochemical Series and uses of Series	27
2.3	Standard Hydrogen Electrode	30
2.4	Calomel Electrode	31
2.5	Glass Electrode	33
2.6	Concentration Cell	34
2.7	Explain Dry Cell or Lechlanch Cell	37
2.8	Explain Lithium-MnO ₂ Batteries or Lithium Batteries	38
2.9	Explain Ni-Cd Battery	38
2.10	Write a Note on Nickel Metal Hydride Batteries	39

2.11	Write a note on Zinc Air Battery	40
2.12	H_2 - O_2 fuel cell	42
2.13	Methanol – O_2 Fuel Cell	43
2.14	Phosphoric Acid Fuel Cells	44
2.15	Molten Carbonate Fuel Cells	44
2.16	Dry Corrosion or Chemical Corrosion	46
2.17	Explain the Mechanism of Wet Corrosion	47
2.18	Different types of Wet/ Electrochemical Corrosion	49
2.19	The Factors Influencing Corrosion	51
2.20	Cathodic Protection	51
2.21	Cathodic and Anodic Inhibitors	52
2.22	Protective Coating	53
2.23	Galvanization	54
2.24	Tinning	54
2.25	Explain Electroplating or Electro-Deposition Process	55
2.26	Explain Electroless Plating of Ni	56
2.27	Explain Electroless Plating of Cu	58
2.28	Paints	58
Unit 3	Material Chemistry	60-97
3.1	Semiconductors	60
3.2	Stoichiometric Semiconductors	61
3.3	Defect Semiconductors/Non Stochiometric Semiconductors	61
3.4	Controlled-Valence Semiconductors	62
3.5	Chalcogen Photo Semi Conductors	63
3.6	Preparation of Semiconductors	63
3.7	Distillation	63
3.8	Zone Refining	64
3.9	Czochralski Crystal Pulling Technique	64
3.10	Epitaxy	65
3.11	Diffusion Technique	66
3.12	Ion Implantation Technique	66
3.13	Semiconductor Devices	67
3.13 3.14	Semiconductor Devices Magnetic Materials	67 70
3.13 3.14 3.15	Semiconductor Devices Magnetic Materials Hall Effect	67 70 72
3.13 3.14 3.15 3.16	Semiconductor Devices Magnetic Materials Hall Effect Insulators	67 70 72 73

3.18	Sol-Gel Method of Preparation of Nano Materials (6M)	76
3 19	Chemical Reduction Method of Preparation of	78
5.17	Nano Materials	70
3.20	Brunauer Emmett Teller Method (BET)	78
3.21	Transmission Electron Microscopy (TEM)	78
3.22	Scanning Electron Microscope (SEM)	79
3.23	Carbon Nanotubes: Preparation & Applications	81
3.24	Fullerenes: Types, Preparations, Properties	84
	&Applications	-
3.25	Graphene	85
3.26	Liquid Crystals: Introduction, Types,	87
	Applications	
3.27	Super Conductors: Type-I, Type-Ii, Properties,	92
	Applications	
3.28	Properties of Superconductors	93
3.29	Meissner Effect	
3.30	Type-I and Type –II Super Conductors	94
3.31	Distinguish Between Type-I And Type - II	96
	Superconductors	
	•	
3.32	Applications of Superconductors	96
3.32 Unit 4	Applications of Superconductors Spectroscopic Techniques & Non	96 98-122
3.32 Unit 4	Applications of Superconductors Spectroscopic Techniques & Non Conventional Energy Sources	96 98-122
3.32Unit 44.1	Applications of Superconductors Spectroscopic Techniques & Non Conventional Energy Sources Electromagnetic Spectrum	96 98-122 98
3.32 Unit 4 4.1 4.2	Applications of Superconductors Spectroscopic Techniques & Non Conventional Energy Sources Electromagnetic Spectrum Laws of Absorption	96 98-122 98 99
3.32 Unit 4 4.1 4.2 4.3	Applications of Superconductors Spectroscopic Techniques & Non Conventional Energy Sources Electromagnetic Spectrum Laws of Absorption Instrumentation of UV Spectroscopy	96 98-122 98 99 99 99
3.32 Unit 4 4.1 4.2 4.3 4.4	Applications of Superconductors Spectroscopic Techniques & Non Conventional Energy Sources Electromagnetic Spectrum Laws of Absorption Instrumentation of UV Spectroscopy Theory of Electronic Spectroscopy	96 98-122 98 99 99 99 101
3.32 Unit 4 4.1 4.2 4.3 4.4 4.5	Applications of Superconductors Spectroscopic Techniques & Non Conventional Energy Sources Electromagnetic Spectrum Laws of Absorption Instrumentation of UV Spectroscopy Theory of Electronic Spectroscopy Franck – Condon Principle	96 98-122 98 99 99 101 102
3.32 Unit 4 4.1 4.2 4.3 4.4 4.5 4.6	Applications of Superconductors Spectroscopic Techniques & Non Conventional Energy Sources Electromagnetic Spectrum Laws of Absorption Instrumentation of UV Spectroscopy Theory of Electronic Spectroscopy Franck – Condon Principle Chromophores and Auxochromes	96 98-122 98 99 99 101 102 103
3.32 Unit 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7	Applications of Superconductors Spectroscopic Techniques & Non Conventional Energy Sources Electromagnetic Spectrum Laws of Absorption Instrumentation of UV Spectroscopy Theory of Electronic Spectroscopy Franck – Condon Principle Chromophores and Auxochromes Intensity Shifts	96 98-122 98 99 99 101 102 103 103
3.32 Unit 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8	Applications of Superconductors Spectroscopic Techniques & Non Conventional Energy Sources Electromagnetic Spectrum Laws of Absorption Instrumentation of UV Spectroscopy Theory of Electronic Spectroscopy Franck – Condon Principle Chromophores and Auxochromes Intensity Shifts Applications	96 98-122 98 99 99 101 102 103 103 103
3.32 Unit 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	Applications of Superconductors Spectroscopic Techniques & Non Conventional Energy Sources Electromagnetic Spectrum Laws of Absorption Instrumentation of UV Spectroscopy Theory of Electronic Spectroscopy Franck – Condon Principle Chromophores and Auxochromes Intensity Shifts Applications FT-IR Instrumentation	96 98-122 98 99 99 101 102 103 103 104 104
3.32 Unit 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10	Applications of Superconductors Spectroscopic Techniques & Non Conventional Energy Sources Electromagnetic Spectrum Laws of Absorption Instrumentation of UV Spectroscopy Theory of Electronic Spectroscopy Theory of Electronic Spectroscopy Franck – Condon Principle Chromophores and Auxochromes Intensity Shifts Applications FT-IR Instrumentation IR of Some Organic Compounds	96 98-122 98 99 99 101 102 103 103 103 104 104 104
3.32 Unit 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11	Applications of Superconductors Spectroscopic Techniques & Non Conventional Energy Sources Electromagnetic Spectrum Laws of Absorption Instrumentation of UV Spectroscopy Theory of Electronic Spectroscopy Theory of Electronic Spectroscopy Franck – Condon Principle Chromophores and Auxochromes Intensity Shifts Applications FT-IR Instrumentation IR of Some Organic Compounds Applications of FT-IR	96 98-122 98 99 99 101 102 103 103 103 104 104 106 108
3.32 Unit 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12	Applications of Superconductors Spectroscopic Techniques & Non Conventional Energy Sources Electromagnetic Spectrum Laws of Absorption Instrumentation of UV Spectroscopy Theory of Electronic Spectroscopy Franck – Condon Principle Chromophores and Auxochromes Intensity Shifts Applications FT-IR Instrumentation IR of Some Organic Compounds Applications of FT-IR Magnetic Resonance Imaging Procedure	96 98-122 98 99 99 101 102 103 103 103 104 104 104 106 108 109
3.32 Unit 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13	Applications of Superconductors Spectroscopic Techniques & Non Conventional Energy Sources Electromagnetic Spectrum Laws of Absorption Instrumentation of UV Spectroscopy Theory of Electronic Spectroscopy Franck – Condon Principle Chromophores and Auxochromes Intensity Shifts Applications FT-IR Instrumentation IR of Some Organic Compounds Applications of FT-IR Magnetic Resonance Imaging Procedure Magnetic Resonance Image Applications	96 98-122 98 99 99 101 102 103 103 103 104 104 104 106 108 109 111
3.32 Unit 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13 4.14	Applications of Superconductors Spectroscopic Techniques & Non Conventional Energy Sources Electromagnetic Spectrum Laws of Absorption Instrumentation of UV Spectroscopy Theory of Electronic Spectroscopy Franck – Condon Principle Chromophores and Auxochromes Intensity Shifts Applications FT-IR Instrumentation IR of Some Organic Compounds Applications of FT-IR Magnetic Resonance Imaging Procedure Magnetic Resonance Image Applications CT Scan Procedure and Applications	96 98-122 98 99 99 101 102 103 103 103 104 104 106 108 109 111 112
3.32 Unit 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13 4.14 4.15	Applications of Superconductors Spectroscopic Techniques & Non Conventional Energy Sources Electromagnetic Spectrum Laws of Absorption Instrumentation of UV Spectroscopy Theory of Electronic Spectroscopy Franck – Condon Principle Chromophores and Auxochromes Intensity Shifts Applications FT-IR Instrumentation IR of Some Organic Compounds Applications of FT-IR Magnetic Resonance Imaging Procedure Magnetic Resonance Image Applications CT Scan Procedure and Applications Photovoltaic Cells	96 98-122 98 99 99 101 102 103 103 103 104 104 104 104 106 108 109 111 112 114

4.17	Geothermal power	116
4.18	Tidal and Wave Power	119
4.19	Ocean Thermal Energy Conversion	119
Unit 5	Advanced Topics/Cocepts in Chemistry	123-139
5.1	Advantages of Computational Chemistry	123
5.2	Computed Molecular Properties	124
5.3	Computational Methods	124
5.4	Electronic Structure Methods (Theoretical Model)	125
5.5	Hartree – Fock Theory	126
5.6	Electron Correlation Energy	127
5.7	Basis Function	128
5.8	Density Functional Theory (DFT)	128
5.9	Applications of DFT calculations	129
5.10	Advantages and Disadvantages of DFT	130
5.11	Molecular Modeling	130
5.12	Docking Studies	131
5.13	Characterization of Molecular Level Machines Through	134
5.14	Applications of Molecular Machines	135
5.15	Prototypes	135
5.16	Preparation of Rotaxane	138
5.17	Preparation of Catenane	139

About the Authors

Dr. R. S. S. Srikanth Vemuri M.Sc., Ph. D; received the B. Sc degree (2005) in Chemistry and M. Sc. degree (2007) in Applied Environmental Chemistry from Andhra University, India. Later he awarded his Doctoral degree in Kinetic studies on some micellar catalysed electron transfer reactions from same institution in 2014. He was the awarded of UGC N- SAP fellowship during the period 2008 -

2014. He was also achieved Indian Academy of Sciences Summer Research Fellowship in 2019. Recently honoured with Young Scientist Award by VD Good organization in 2021. He is working as an Associate Professor in Chemistry at Vignan's Institute of Engineering for Women, Visakhapatnam, India from 2014 to till date. His research interests are Environmental Chemistry, Computational Chemistry and Physical Chemistry. Present he is working on homogenous and heterogeneous catalysis, multivariate statistical analysis of soil samples and theoretical studies on tuning of molecules for semi conductors.

Dr. Madhavi Konni holds a doctorate in Nanoscience and Nanotechnology in the Department of Chemistry from GITAM (Deemed to be University), Visakhapatnam, India. Currently, she is working as Associate Professor at Dadi Institute of Engineering and Technology, Anakapalle. Her research interests include synthesizing Metal-Organic Frameworks, Material Chemistry, Carbon Nano Materials, Hydrogen Storage Technologies, and Nano Catalysis. She published many

research articles and book chapters in reputed international journals and holds two patents. Dr. Madhavi is a fellow and received HEAM Scholar Award (2018), the Young Scientist Award (December 2017 and March 2017), and few other awards from different societies.

Selfypage Developers Pvt Ltd.

